University of Technology Sydney

42823 Applied Data Analytics

Warning: The information on this page is indicative. The subject outline for a particular session, location and mode of offering is the authoritative source of all information about the subject for that offering. Required texts, recommended texts and references in particular are likely to change. Students will be provided with a subject outline once they enrol in the subject.

Subject handbook information prior to 2025 is available in the Archives.

UTS: Information Technology: Computer Science
Credit points: 2 cp
Result type: Grade and marks

Requisite(s): 42822 Advanced Data Analytics
Anti-requisite(s): 31250 Introduction to Data Analytics AND 32130 Fundamentals of Data Analytics

Description

Data analytics is the art and science of turning large quantities of usually incomprehensible data into meaningful and commercially valuable information. It is the basis of modern computer analytics and intelligence. It includes a number of IT areas, such as statistical methods for identifying patterns in data and making inferences; database technologies for managing the data sets to be mined; a range of intelligent technologies that derive automatically patterns from data; and visualisation and other multimedia techniques that support human pattern discovery capabilities.

Applied Data Analytics develops the autonomy of learners to plan and implement a data mining project using the most common approach to data mining called cross-industry standard process for data mining, known as CRISP-DM. From pre-processing to deployment of results: representing patterns as rules, functions, cases; model deployment; industry applications, this practical problem based microcredential enables demonstration of analytics expertise and professional communication of analytics.

Subject learning objectives (SLOs)

Upon successful completion of this subject students should be able to:

1. Implement a data mining project in a business environment. (D.1)

Course intended learning outcomes (CILOs)

This subject also contributes specifically to the development of the following Course Intended Learning Outcomes (CILOs):

  • Technically Proficient: FEIT graduates apply theoretical, conceptual, software and physical tools and advanced discipline knowledge to research, evaluate and predict future performance of systems characterised by complexity. (D.1)

Teaching and learning strategies

Microcredential presentation includes weekly synchronous one-hour online workshops facilitated by an expert UTS academic(s) supporting self-study and online (LMS) learning activities. Case studies of real-world business illustrate applications of data mining techniques. The workshop sessions focus on hands-on experience in data mining and data analytics tools, and the understanding and interpretation of the results. Regular formative quizzes throughout the semester will allow learners to gauge their progress.

Content (topics)

  • Evaluation and implementation of the data mining and knowledge discovery process.
  • Current research landscape in data analytics.
  • Deployment of results: representing patterns as rules, functions, cases; model deployment; industry applications.

Assessment

Assessment task 1: Enterprise Data Mining

Intent:

Enterprise Data Mining – data mining project

Objective(s):

This assessment task addresses the following subject learning objectives (SLOs):

1

This assessment task contributes to the development of the following Course Intended Learning Outcomes (CILOs):

D.1

Type: Project
Groupwork: Individual
Weight: 100%
Length:

2,000 words

Minimum requirements

In order to pass the microcredential, a learner must achieve an overall mark of 50% or more.