37493 Thesis (Mathematics) Honours Part A
Warning: The information on this page is indicative. The subject outline for a
particular session, location and mode of offering is the authoritative source
of all information about the subject for that offering. Required texts, recommended texts and references in particular are likely to change. Students will be provided with a subject outline once they enrol in the subject.
Subject handbook information prior to 2025 is available in the Archives.
Credit points: 12 cp
Result type: Grade and marks
There are course requisites for this subject. See access conditions.
Anti-requisite(s): 35493 Thesis (Mathematics) Honours Part A
Description
The thesis is an individually supervised subject with no formally scheduled classes. Regular meetings are arranged between the supervisor and student. Students perform an independent investigation of an area of the mathematical sciences chosen in consultation with a supervisor who is appointed by the head of department. The subject is preparation for 37494 Thesis: Mathematics (Honours) Part B and results are only allocated on completion of that subject.
Subject learning objectives (SLOs)
Upon successful completion of this subject students should be able to:
1. | develop a broad and deeper knowledge of the chosen field of study |
---|---|
2. | review and respond to existing academic literature |
3. | work independently on a topic in the area of specialisation |
4. | present talks and seminars appropriate to professional meetings or academic conferences |
5. | prepare a formal report on the findings and results of a project |
Course intended learning outcomes (CILOs)
This subject also contributes specifically to the development of following course intended learning outcomes:
- Analyse: Examine and combine the principles and concepts of a broad understanding in a range of fundamental areas in the mathematical sciences (calculus, discrete mathematics, linear algebra, probability, statistics and quantitative management). (1.2)
- Synthesise: Integrate extensive knowledge of at least one sub-discipline of the Mathematical Sciences. (1.3)
- Apply: Formulate and model practical and abstract problems that are complex in nature using advanced quantitative principles, concepts, techniques, and technology. (2.1)
- Analyse: Devise solutions to problems based on a selection of approaches (e.g. analytic vs numerical/experimental, different statistical tests, different heuristic algorithms) and various sources of data and knowledge. (2.2)
- Apply: Ability to work effectively and responsibly in an individual or team context. (3.1)
- Analyse: Organise and manage a project demonstrating advanced skills in Mathematical Programming and Specialist Mathematical/Statistical/QM Software using time management and collaborative skills. (3.2)
- Analyse: Advanced information retrieval and consolidation skills applied to the critical evaluation of the mathematical/statistical aspects of information gathered. (4.2)
- Synthesise: Test critical thinking skills to create solutions for contemporary mathematics problems. (4.3)
- Synthesise: Conduct independent research to clarify a problem or to obtain the information required to develop elegant mathematical solutions. (5.3)
Contribution to the development of graduate attributes
1.0: Disciplinary Knowledge On successful completion of this course, graduates will have developed: Knowledge of mathematics to demonstrate depth, breadth, application, and interrelationships of relevant discipline areas. On successful completion of this course, graduates will be able to: - Apply: Develop and distinguish between logical, clearly-presented, and justified arguments incorporating deductive reasoning to solve complex problems. - Analyse: Examine and combine the principles and concepts of a broad understanding in a range of fundamental areas in the mathematical sciences (calculus, discrete mathematics, linear algebra, probability, statistics and quantitative management). - Synthesise: Integrate extensive knowledge of at least one sub-discipline of the Mathematical Sciences.
2.0: Research, inquiry and critical thinking On successful completion of this course, graduates will have developed: The ability to frame conjectures and hypotheses using a scientific approach, to test current mathematics knowledge through critical evaluation and data analyses, and to solve problems through theoretical work and/or experimental observation. On successful completion of this course, graduates will be able to: - Apply: Formulate and model practical and abstract problems that are complex in nature using advanced quantitative principles, concepts, techniques, and technology. - Analyse: Devise solutions to problems based on a selection of approaches (e.g. analytic vs numerical/experimental, different statistical tests, different heuristic algorithms) and various sources of data and knowledge. - Synthesise: Design and execute appropriate studies to test hypotheses.
3.0: Professional, ethical, and social responsibility On successful completion of this course, graduates will have developed: A capacity to work ethically and professionally using technical, practical, and collaborative mathematics skills within the context of the workplace, and apply these to meet the current and future needs of society. On successful completion of this course, graduates will be able to: - Apply: Ability to work effectively and responsibly in an individual or team context. - Analyse: Organise and manage a project demonstrating advanced skills in Mathematical Programming and Specialist Mathematical/Statistical/QM Software using time management and collaborative skills. - Synthesise: Ethical application of mathematical and statistical approaches to problem-solving and decision-making.
4.0: Reflection, Innovation, Creativity On successful completion of this course, graduates will have developed: The ability to design creative solutions to contemporary mathematics-related issues using reflective practices and self-directed learning. On successful completion of this course, graduates will be able to: - Apply: Demonstrate well-developed self-reflection, and individual and independent learning strategies to extend existing knowledge and that of others. - Analyse: Advanced information retrieval and consolidation skills applied to the critical evaluation of the mathematical/statistical aspects of information gathered. - Synthesise: Test critical thinking skills to create solutions for contemporary mathematics problems
5.0: Communication On successful completion of this course, graduates will have developed: Effective and professional communication skills for a range of scientific audiences. On successful completion of this course, graduates will be able to: - Apply: Succinct and accurate presentation of information, reasoning, and conclusions in a variety of modes to diverse expert and non-expert audiences. - Analyse: Integrate written and verbal instructions or problem statements and the ability to convey solutions to non-technical stakeholders clearly and coherently. - Synthesise: Conduct independent research to clarify a problem or to obtain the information required to develop elegant mathematical solutions.
Teaching and learning strategies
Your supervisor will inform you about consultation hours and the supervisor’s availability during the academic year. Your supervisor will not normally be available for advice during the six week period from mid-December until 1 February.
It is assumed that students commencing their Honours program in Autumn semester will begin work on their project immediately on enrolling in the Honours course (usually March). It is assumed that students commencing their Honours program in Spring semester will begin work on their project at the start of Spring semester (usually the first week of August).
You are expected to have regular contact with your supervisor and to maintain satisfactory progress. Consultation sessions should be complemented by regular work. The workload in each part of the project is equivalent to two six credit point subjects.
Content (topics)
The content of the project will be determined by the supervisor in consultation with the student.
Assessment
Assessment task 1: Literature review
Intent: | Student should submit a complete literature review during the semester they are enrolled in this subject. The literature review should cover relevant background in the topic of the Honours Thesis. Feedback will be given from the supervisor(s) and honours coordinator. Students are encouraged to prepare the review using LaTeX with BibTeX for references. |
---|---|
Objective(s): | This assessment task addresses subject learning objective(s): 2 and 3 This assessment task contributes to the development of course intended learning outcome(s): 1.2, 3.2 and 4.2 |
Type: | Literature review |
Groupwork: | Individual |
Weight: | 10% |
Length: | 5-10 pages |
Criteria: | Comprehensive survey of the area of the thesis topic. Professional quality document produced using LaTeX, with references using BibTeX obtained from appropriate sources (eg MathSciNet). Exception to the use of LaTeX may be considered if the standard in the field of the thesis topic is to use Word etc. |
Assessment task 2: Honours Thesis
Intent: | The Honours thesis is designed to offer students the experience of writing up an extended document as a record of their academic progress on a research topic. This provides the potential to improve project and time management skills, as well as practice at writing an academic thesis. The development of these skills should aid students who wish to progress into higher research degrees or into commercial consultancy work. This provides an opportunity to assess the abilities of students, both in terms of their abilities to conduct research within the mathematical sciences and also their academic report writing skills. |
---|---|
Objective(s): | This assessment task addresses subject learning objective(s): 1, 2, 3 and 5 This assessment task contributes to the development of course intended learning outcome(s): 1.2, 1.3, 2.1, 2.2, 3.1, 4.3 and 5.3 |
Type: | Thesis |
Groupwork: | Individual |
Weight: | 90% |
Length: | There is no prescribed word limit for an Honours thesis, although you are advised that a thesis should typically be around 70 pages, including references. |
Criteria: | Your Honours examiners will each assign your thesis a mark out of 100. This mark will be the sum of the assessed marks for the following four criteria: Criterion One– Knowledge of Research Field (20 marks)
Except in cases when the examiners’ marks for your thesis differ by greater than 10/100, your mark for the thesis component will be the simple arithmetic mean of the examiners’ marks. For cases where the examiners differ by more than 10 in their assessed marks, your thesis mark will be determined by the procedures outlined in the Faculty of Science Honours Subject Information Booklet.
|
Minimum requirements
In order to pass this subject you must get a final mark of at least 50.
Any thesis submitted without a signed Declaration of Originality and Plagiarism Awareness shall be assessed as incomplete and awarded an X(Fail) grade.