University of Technology Sydney

C04418v2 Master of Data Science in Quantitative Finance

Award(s): Master of Data Science in Quantitative Finance (MDataScQF)
CRICOS code: 107831E
Commonwealth supported place?: Yes
Load credit points: 96
Course EFTSL: 2
Location: City campus

Notes

Commonwealth Supported Places

There are a limited number of Commonwealth Supported Places (CSPs) available in this course, which are competitive and awarded based on merit. To be considered for a CSP, applicants must:

  • Indicate their interest in a CSP on their application.
  • Apply on time in line with CSP deadlines (it is recommended applicants apply early as applications are assessed progressively).

Eligible applicants must accept their offer by the lapse date to retain their place. For application deadlines and information, please refer to Postgraduate courses with Commonwealth Supported Places.

30% Postgraduate Scholarship

There is a 30% Postgraduate Scholarship available in 2024. Eligible students must commence one of the Master's quantitative finance courses in the Faculty of Science:

  • C04373 - Master of Quantitative Finance; or
  • C04418 - Master of Data Science in Quantitative Finance; or
  • C04419 - Master of Mathematics and Quantitative Finance.

For more details, refer to the UTS Quantitative Finance Postgraduate Scholarship.


Overview
Career options
Course intended learning outcomes
Admission requirements
Recognition of prior learning
Course duration and attendance
Course structure
Course completion requirements
Course program
Articulation with UTS courses
Other information

Overview

Major regulatory changes and the emergence of new types of financial risks mean that skilled quantitative finance professionals are more in demand than ever. The UTS postgraduate Quantitative Finance program is recognised in Australia and overseas as a leading qualification for aspiring and established quantitative finance professionals.


Designed by industry experts and leading UTS academics, the Master of Data Science in Quantitative Finance combines subjects from the internationally acclaimed UTS Master of Quantitative Finance with specialist study in data science and statistical modelling. Students learn to tackle data problems on new scales and at increasing levels of complexity and emerge ready to deliver advanced analysis and modelling in portfolio optimisation, market and credit risk modelling.


Explore our quantitative finance degrees
UTS offers a suite of postgraduate quantitative finance degrees, each with a different area of focus. Students considering the Master of Mathematics and Quantitative Finance may also be interested in the following courses:

Course content is comprised of 11 subjects, including six subjects from the Master of Quantitative Finance. Students engage with the in-depth study of financial market instruments, probability theory, and credit and market risk, among others, and diversify their skill sets with specialist study in machine learning, Bayesian methods and mathematical research.

They also learn to apply their theoretical learning to industry-relevant assignments in areas such as derivative security pricing and hedging, valuation of financial instruments, market and credit risk measurement and management, and machine learning.

Career options

Graduates are highly sought after by leading financial institutions, management consulting companies, energy and mining companies, regulatory bodies, government organisations and other organisations seeking advanced data science and quantitative finance expertise.

They can work as quantitative analysts, data scientists, data analysts, quantitative structurers, quantitative developers, forecasters, traders, financial engineers, market risk analysts, credit risk analysts, data engineers, data modellers and investment analysts.

Course intended learning outcomes

1.1 Appraise advanced knowledge and critically evaluate and question the information's source and relevance, with a focus on applications of mathematical methodologies to quantitative finance problem solving.
2.1 Investigate complex and challenging real-world problems in the areas of quantitative finance by critically evaluating information and solutions and conducting appropriate approaches to independent research.
3.1 Engage in work practices that demonstrate an understanding of confidentiality requirements, ethical conducts, data management, and organisation and collaborative skills in the context of applying mathematical and statistical modelling to quantitative finance problems.
4.1 Reflect and evaluate the value, integrity, and relevance of multiple sources of information to derive responsive, innovative solutions, show creativity, innovation and application of technologies in complex quantitative finance problems.
5.1 Develop and present complex ideas and justifications using appropriate communication approaches from a variety of methods (oral, written, visual) to communicate with mathematicians, data analysts, scientists,industry, and the general public.
6.1 Critically reflect on Indigenous Australian contexts to inform professional cultural capability to work effectively with and for, Indigenous Australians within Mathematical, Statistical, and Finance contexts.

Admission requirements

To be eligible for admission to this course, applicants must meet the following criteria.

Applicants must have the following:

  • Completed Australian bachelor's degree or higher qualification, or overseas equivalent, in a related discipline with a substantial quantitative component in mathematics, statistics, engineering, computer science, physical sciences, econometrics, or mathematical finance

The English proficiency requirement for international students or local applicants with international qualifications is: IELTS Academic: 6.5 overall with a writing score of 6.0; or TOEFL iBT: 79-93 overall with a writing score of 21; or AE5: Pass; or PTE: 58-64 with a writing score of 50; or C1A/C2P: 176-184 with a writing score of 169.

Eligibility for admission does not guarantee offer of a place.

International students

Visa requirement: To obtain a student visa to study in Australia, international students must enrol full time and on campus. Australian student visa regulations also require international students studying on student visas to complete the course within the standard full-time duration. Students can extend their courses only in exceptional circumstances.

Recognition of prior learning

Students may be granted a maximum of 36 credit points of recognition of prior learning.

Course duration and attendance

The course is normally completed in two years of full-time study or four years of part-time study.

Course structure

The course comprises 96 credit points of core subjects.

Course completion requirements

STM91462 Core Subjects (M Quantitative Finance and Data Science) 96cp
Total 96cp

Course program

Typical full-time programs are provided below, showing a suggested study sequence for students undertaking the course with Autumn and Spring session commencements.

Autumn commencing, full time
Year 1
Autumn session
37007 Probability Theory and Stochastic Analysis   8cp
37011 Financial Market Instruments   8cp
37010 Statistics and Financial Econometrics   8cp
Spring session
37004 Interest Rates and Credit Risk Models   8cp
37005 Fundamentals of Derivative Security Pricing   8cp
37009 Risk Management   8cp
Year 2
Autumn session
35112 Mathematical Research Project A   12cp
37400 Postgraduate Optimisation   8cp
Spring session
37401 Machine Learning: Mathematical Theory and Applications   8cp
37457 Advanced Bayesian Methods   8cp
35113 Mathematical Research Project B   12cp
Spring commencing, full time
Year 1
Spring session
37401 Machine Learning: Mathematical Theory and Applications   8cp
37457 Advanced Bayesian Methods   8cp
37009 Risk Management   8cp
Year 2
Autumn session
37007 Probability Theory and Stochastic Analysis   8cp
37011 Financial Market Instruments   8cp
37010 Statistics and Financial Econometrics   8cp
Spring session
37004 Interest Rates and Credit Risk Models   8cp
37005 Fundamentals of Derivative Security Pricing   8cp
35113 Mathematical Research Project B   12cp
Year 3
Autumn session
35112 Mathematical Research Project A   12cp
37400 Postgraduate Optimisation   8cp

Articulation with UTS courses

Students who complete C11307 Graduate Certificate in Data Science in Quantitative Finance or C04373 Master of Quantitative Finance can transfer into C04418 Master of Data Science in Quantitative Finance and receive full recognition of prior learning for the subjects already completed.

Other information

Further information is available from:

UTS Student Centre
telephone 1300 ask UTS (1300 275 887)
or +61 2 9514 1222
Ask UTS