University of Technology Sydney

320146 Data Visualisation and Visual Analytics

Warning: The information on this page is indicative. The subject outline for a particular session, location and mode of offering is the authoritative source of all information about the subject for that offering. Required texts, recommended texts and references in particular are likely to change. Students will be provided with a subject outline once they enrol in the subject.

Subject handbook information prior to 2025 is available in the Archives.

UTS: Information Technology: Computer Science
Credit points: 6 cp

Subject level:

Postgraduate

Result type: Grade and marks

Requisite(s): (((260776 Foundation of Business Analytics OR 220804 Business Analytics Foundations) AND (260777 Data Processing Using SAS OR 220801 Financial Analysis for Decision Making) AND 570100 Data Ethics and Regulation AND (12 credit points of completed study in 12.0000000000 Credit Points spk(s): CBK91894 12cp Foundation Option (Business Analytics) OR 320606 Database)) OR 220700 Data Driven Decision Making )
These requisites may not apply to students in certain courses.
There are course requisites for this subject. See access conditions.
Anti-requisite(s): 32146 Data Visualisation and Visual Analytics

Description

This subject covers the core data visualisation and visual interaction (or navigation) technologies that support the visual analytics and decision-making processes. Students study the latest data visualisation articles and the practice of cutting-edge data visualisation and visual analysis software. The subject provides an essential understanding of the procedure (loop) and the methodology of visual data analytics. It discusses the human involvement (or input) in the loop of analytical reasoning facilitated by interactive visual interfaces. On successful completion of this subject, students are capable of designing and evaluating various advanced visualisation interfaces that can be directly applied into the loop of visual data mining or visual analytics to enable them to become data visualisation designers and visual data analysts.

Subject learning objectives (SLOs)

Upon successful completion of this subject students should be able to:

1. Apply a range of static data visualisation techniques
2. Apply interactive data visualisation techniques. (D.1)
3. Design data visualisations for particular social contexts that are appropriate for specific users. (C.1)
4. Design and create data visualisations that facilitate the discovery and presentation of data-driven stories. (C.1)

Course intended learning outcomes (CILOs)

This subject also contributes specifically to the development of the following Course Intended Learning Outcomes (CILOs):

  • Design Oriented: FEIT graduates apply problem solving, design thinking and decision-making methodologies in new contexts or to novel problems, to explore, test, analyse and synthesise complex ideas, theories or concepts. (C.1)
  • Technically Proficient: FEIT graduates apply theoretical, conceptual, software and physical tools and advanced discipline knowledge to research, evaluate and predict future performance of systems characterised by complexity. (D.1)

Teaching and learning strategies

This subject is taught fully online. Each week is self-paced through the learning management system. You are expected to complete a range of different learning activities throughout the week. Activities provide opportunities to learn, apply and discuss the knowledge gained in a practical manner. Feedback is provided from both peers and teaching staff throughout the activities. You are encouraged to actively provide feedback and interact with staff and students. Online “Zoom” sessions will be held throughout the subject to allow you to interact with staff and students, ask questions and receive clarification and feedback.

Content (topics)

  1. Introduction to data (attributes, relationships, behaviours)
  2. Visual representations of data, information and knowledge
  3. Visual querying, interaction and exploration
  4. Textual data visualization
  5. Zoomable interfaces, “Focus+Context” navigation
  6. Hypermedia (web) visualisation
  7. High-dimensional visualization
  8. Introduction of visual data analytics
  9. Behavior-driven data visualization
  10. Evaluation, visualisation and interaction

Assessment

Assessment task 1: Create an interactive data visualisation of a dataset that includes a range of complex data types

Intent:

Demonstrate ability to identify and create appropriate interactive data visualizations based on the given dataset

Objective(s):

This assessment task addresses the following subject learning objectives (SLOs):

2

This assessment task contributes to the development of the following Course Intended Learning Outcomes (CILOs):

D.1

Type: Project
Groupwork: Individual
Weight: 50%

Assessment task 2: Create an interactive data visualisation that enables users to discover and communicate data-driven stories

Intent:

Explain the range of static and interactive data visualization techniques in a social context.

Objective(s):

This assessment task addresses the following subject learning objectives (SLOs):

1, 2, 3 and 4

This assessment task contributes to the development of the following Course Intended Learning Outcomes (CILOs):

C.1 and D.1

Type: Project
Groupwork: Individual
Weight: 50%

Minimum requirements

In order to pass the subject, a student must achieve an overall mark of 50% or more.

References

  1. Card, S. K., MacKinlay, J. D., Shneiderman, B., (2000) Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann, ISBN 1-55860-533-9
  2. Colin Ware (2000) Information Visualization: Perception for Design, Morgan Kaufmann, ISBN 1-55860-511-8
  3. Geroimenko, V. & Chen, C., (2002) Visualizing the Semantic Web, Springer-Verlag, London, ISBN 1-85233-576-9
  4. Chaomei Chen (1999) Information Visualization and Virtual Environments, Springer-Verlag, London, ISBN 1-85233-136-4
  5. Simoff, S., Bohlen, M., Mazeika A. (2008) Visual Data Mining: Theory, Techniques and Tools for Visual Analytics (Lecture Notes in Computer Science / Information Systems and Applications), Springer
  6. Huang, M. L., Huang, W. (2013) Innovative Approaches of Data Visualization and Visual Analytics. IGI Global, ISBN13: 9781466643093

Other resources

Canvas provides online support for the learning of this subject.