36106 Machine Learning Algorithms and Applications
8cp; block mode with weekly online work, 1 Wednesday evening and 4 Saturday sessions online or on campus; availability: Master of Data Science and Innovation and Master of Business Analytics studentsRequisite(s): 48 credit points of completed study in 48.0000000000 Credit Points spk(s): C04379 Master of Business Analytics (Extension)
These requisites may not apply to students in certain courses.
There are course requisites for this subject. See access conditions.
Anti-requisite(s): 36113 Applied Data Science for Innovation AND 36114 Advanced Data Science for Innovation
Requisite elaboration/waiver:
Any student wishing to enrol in first- and second-year subjects concurrently must apply for a waiver.
Postgraduate
Description
This subject introduces students to key machine learning algorithms and their application in real-world settings. Participants are guided in developing an intuitive understanding of how the algorithms work, as well as their strengths and weaknesses. In addition to gaining practical experience with the algorithms, students develop an understanding of the basic principles of machine learning and the connections between different algorithms. Additionally, they are exposed to industry standard methodologies for data mining and analytics via readings and assessments. Since data science problems are infused with assumptions, often with ethical and legal implications, due attention is given to questioning the assumptions behind data and approaches used to analyse it.
Typical availability
Autumn session, City campus
Detailed subject description.