C09075v5 Bachelor of Engineering (Honours) Bachelor of Medical Science Diploma in Professional Engineering Practice
Award(s): Bachelor of Engineering (Honours) in (name of Engineering major) Diploma in Professional Engineering Practice (BE(Hons) DipProfEngPrac)Bachelor of Medical Science (BMedSc)
CRICOS code: 084096C
Commonwealth supported place?: Yes
Load credit points: 288
Course EFTSL: 6
Location: City campus
Notes
Direct admission to this course via the Universities Admissions Centre (UAC) is not available. Students currently enrolled in the Bachelor of Engineering (Honours) Bachelor of Medical Science (C09074) may apply via Internal Course Transfer.
Overview
Career options
Innovation and Transdisciplinary program
Course intended learning outcomes
Admission requirements
Inherent requirements
Recognition of prior learning
Course duration and attendance
Course structure
Course completion requirements
Levels of award
Honours
Transfer between UTS courses
Professional recognition
Other information
Overview
This combined degree is the same as the Bachelor of Engineering (Honours) Bachelor of Medical Science (C09074), except for the additional requirement of two internships and completion of the professional engineering practice program. Students can transfer to this program if they wish to complete the Diploma in Professional Engineering Practice.
Engineers and Medical Scientists are the leaders of developing, engineering, and implementing solutions to health and medical problems having an impact globally on the health of society. This combined degree is designed to provide opportunities for students interested in medical science, the scientific basis of engineering and technology, and the technology itself.
There is a strong interrelation between the progress of engineering and developments in science, and a demonstrated need for professionals with a strong understanding and experience in both areas. Engineers with Medical Scientist training have careers that are dynamic and involve an exciting range of professions from research and development, writing and implementing policy and practice in the medical and health sciences, to working in industry, government, and the innovation sector. This course allows choice or majors within both the Medical Scientist and Engineering programs, so students can specialise to their interests.
The Bachelor of Engineering (Honours) program has a core taken by all engineering students which provides the foundation knowledge and skills required of every engineer. Students choose a major which is where they develop the technical knowledge specific to that field of practice. There is a choice of eleven majors including Biomedical, Civil, Data, Electrical, Mechanical, Software, and a Flexible major that can be paired with the choice of major in the Bachelor of Medical Science to create a study trajectory that aligns with the student’s interests and career ambitions.
Medical Scientists at UTS can choose to major in Medical and Health-related Sciences or Pathology, allowing them to have speciality relevant to their career choices and interests. In the Medical and Health-related Sciences major students will learn the body through the study of tissues, organs and cellular facets both in health and disease, medical devices, how medicines work, as well as public health policies and clinical trials. In the Pathology major students will learn how diseases trigger biochemical or cellular changes in the body and how to best diagnose and treat these diseases. Students learn by applying and investigating scientific approaches in world class laboratories and studios with up-to-date scientific technologies and equipment in line with those used in the industry. This hands-on learning is accompanied by development of professional skills such as communication, problem solving, critical thinking, innovation and team-work to deliver impact across local and global communities.
A strong professional focus ensures graduates of this course learn the skills employers want with a solid link between theory and practice and the benefits of hands-on experience. Students explore and investigate the human body's structure, function and disease processes at the cellular and whole organ level. In the engineering program students build strong foundations in engineering theory, technical expertise and knowledge of professional practice. The course provides the knowledge and skills for students to be excellent medical scientists and engineers, who can make a difference to society in a range of careers.
This combined degree can be completed in less time than would be required to complete the two degrees separately.
Career options
There are excellent career options for students who have dual degrees as they have a unique combination of strengths to add to many professions. Career options include positions in medical engineering, biomedical engineering, industry and government settings, biotechnology, communications, construction, pharmaceutical settings, clinical trial and medical device research and development, materials technology, medical technology and instrumentation, and molecular biology.
Innovation and Transdisciplinary program
Transdisciplinarity and Innovation at UTSAll UTS students have the opportunity to develop distinctive capabilities around transdisciplinary thinking and innovation through the TD School. Transdisciplinary education at UTS brings together great minds from different disciplines to explore ideas that improve the way we live and work in the world. These offerings are unique to UTS and directly translate to many existing and emerging roles and careers.
Diploma in InnovationThe Diploma in Innovation (C20060) teaches innovation, supports personal transformation and provides the hard skills needed to support the inventors and inventions of the future. Students come out of the Diploma in Innovation, with the hard skills to create and support sectoral and societal transformation. Graduates are able to fluently integrate ideas, across professional disciplines and are inventors of the future.
All UTS undergraduate students (with the exception of students concurrently enrolled in the Bachelor of Creative Intelligence and Innovation) can apply for the Diploma in Innovation upon admission in their chosen undergraduate degree. It is a complete degree program that runs in parallel to any undergraduate degree. The course is offered on a three-year, part-time basis, with subjects running in 3-week long intensive blocks in July, December and February sessions. More information including a link to apply is available at https://dipinn.uts.edu.au.
Transdisciplinary electives programTransdisciplinary electives broaden students' horizons and supercharge their problem-solving skills, helping them to learn outside, beyond and across their degrees. Students enrolled in an undergraduate course that includes electives can choose to take a transdisciplinary subject (with the exception of students concurrently enrolled in the Bachelor of Creative Intelligence and Innovation). More information about the TD Electives program is available here.
Course intended learning outcomes
FEIT A.1 | Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice graduates are culturally and historically well informed, able to co-design projects as respectful professionals when working in and with Aboriginal and Torres Strait Islander communities. |
FEIT B.1 | Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice graduates identify, engage, interpret and analyse stakeholder needs and cultural perspectives, establish priorities and goals, and identify constraints, uncertainties and risks (social, ethical, cultural, legislative, environmental, economics etc.) to define the system requirements. |
FEIT C.1 | Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice graduates apply research, problem solving, design and decision-making methodologies to develop components, systems and processes to meet specified requirements. |
FEIT D.1 | Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice graduates apply abstraction, mathematics and discipline fundamentals, software, tools and techniques to evaluate, implement and operate systems. |
FEIT E.1 | Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice graduates work as an effective member or leader of diverse teams, communicating effectively and operating within cross-disciplinary and cross-cultural contexts in the workplace. |
FEIT F.1 | Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice graduates critically self-review their performance to improve themselves, their teams and workplace. They take responsibility and accountability for their own life long learning. |
SCI. 1.1 | Explain how diseases arise and disrupt normal physiological function and appraise the technologies used to diagnose, treat, and cure diseases. |
SCI. 2.1 | Collect, accurately record, interpret, and draw conclusions from data to solve real-world medical problems, and infer how the results of medical research can be translated to improve patient outcomes. |
SCI. 3.1 | Evaluate ethical, social, and cultural issues in medical science in local and global contexts and work responsibly, safely and with respect to diversity and regulatory frameworks. |
SCI. 4.1 | Reflect upon, independently evaluate, and critically appraise current evidence-based literature to identify medical problems or unmet medical needs and creatively translate medical research results to improve the clinical care of patients. |
SCI. 5.1 | Effectively communicate medical science knowledge and research information, and the importance thereof, to a range of audiences using a variety of modes, independently and collaboratively. |
SCI. 6.1 | Acquire or Develop knowledge of Indigenous Australian contexts to inform professional cultural capability to work effectively with and for, Indigenous Australians within the medical science context |
Key
SCI = Science course intended learning outcomes (CILOs)
Admission requirements
Applicants must have completed an Australian Year 12 qualification, Australian Qualifications Framework Diploma, or equivalent Australian or overseas qualification at the required level.
The English proficiency requirement for international students or local applicants with international qualifications is: IELTS Academic: 6.5 overall with a writing score of 6.0; or TOEFL iBT: 79-93 overall with a writing score of 21; or AE5: Pass; or PTE: 58-64 with a writing score of 50; or C1A/C2P: 176-184 with a writing score of 169.
Eligibility for admission does not guarantee offer of a place.
International students
Visa requirement: To obtain a student visa to study in Australia, international students must enrol full time and on campus. Australian student visa regulations also require international students studying on student visas to complete the course within the standard full-time duration. Students can extend their courses only in exceptional circumstances.
Inherent requirements
Inherent requirements are academic and non-academic requirements that are essential to the successful completion of a course. For more information about inherent requirements and where prospective and current students can get assistance and advice regarding these, see the UTS Inherent requirements page.
Prospective and current students should carefully read the Inherent Requirements Statement below and consider whether they might experience challenges in successfully completing this course.
UTS will make reasonable adjustments to teaching and learning, assessment, professional experiences, course related work experience and other course activities to facilitate maximum participation by students with disabilities, carer responsibilities, and religious or cultural obligations in their courses.
For course specific information see the Faculty of Engineering & Information Technology Inherent (Essential) Requirements Statement.
Recognition of prior learning
Students who have previously undertaken relevant study at a recognised tertiary education institution may be eligible for recognition of prior learning (RPL) if the subjects completed are deemed by the faculty to be equivalent to subjects in the student's course. Subjects completed as part of a qualification in which study ceased no more than 10 years prior to the student's first semester in the relevant UTS Engineering degree may be considered. Limits apply to the number of credit points of RPL granted.
Course duration and attendance
This course is offered over six years full time, 12 years part time, or seven years full time with honours.
Full-time attendance involves approximately 24 hours each week at the university, which allows a full stage of the course to be completed in one session. Part-time attendance involves approximately 12 hours each week at the university, which allows a full stage to be completed in one year. It is expected that employers will release part-time students for at least one half-day a week for attendance at classes.
Course structure
Students are required to complete 288 credit points, comprising 210 credit points in engineering and 78 credit points in medical science. The engineering component consists of core (48 credit points), major (field of practice) (114 credit points) and the professional engineering practice program (48 credit points). The medical science component represents a specific medical science strand.
Graduation from the medical science component of the combined degree is not possible prior to completion of all components of the combined degree. Students wishing to graduate with a Bachelor of Medical Science prior to completion of the engineering component of the combined degree must apply for transfer to the Bachelor of Medical Science (C10184) single degree program where they must complete all requirements for the stand-alone single degree version.
Similarly, if a student wishes to graduate from the engineering component of the combined degree prior to completion of the medical science component they must apply for transfer to the Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice (C09067) single degree program where they must complete all requirements for the stand-alone single degree version.
Further, students wishing to graduate from the engineering component of the combined degree prior to completion of the medical science component must have completed at least 60 credit points of the medical science major (STM90348).
Industrial training/professional practice
The Diploma in Professional Engineering Practice requires the completion of two six-month internships and the Professional Engineering Practice Program.
Course completion requirements
CBK90176 Major choice (Engineering) | 114cp | |
STM90106 Core subjects | 48cp | |
CBK92145 Major choice (Medical Science) | 78cp | |
STM90993 Professional Engineering Practice Program subjects | 48cp | |
Total | 288cp |
Levels of award
The Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice may be awarded with first or second class honours, which does not require an additional honours year.
Honours
An honours program in medical science (C09031) is available, which involves an extra year of full-time study. The honours program is designed to introduce students to more advanced coursework and to research work in medical sciences. It allows selected students to continue with postgraduate studies if desired and enhances their employment prospects.
Transfer between UTS courses
Students in this combined degree may transfer to the Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice (C09067) or the Bachelor of Medical Science (C10184). International students may transfer to the Bachelor of Engineering (Honours) (C09066).
Professional recognition
The Bachelor of Engineering (Honours) Diploma in Professional Engineering Practice, majoring in Biomedical Engineering, Civil Engineering, Civil and Environmental Engineering, Data Science Engineering, Electrical Engineering, Electronic Engineering, Flexible Engineering, Mechanical Engineering, Mechanical and Mechatronic Engineering, Mechatronic Engineering, or Software Engineering is fully accredited by Engineers Australia at the level of Professional Engineer and is recognised internationally by signatories to the Washington Accord. Chemical Processing Engineering, Electrical and Electronic Engineering, and Renewable Energy Engineering are provisionally accredited with Engineers Australia, pending full accreditation.
Other information
Further information is available from:
UTS Student Centre
telephone 1300 ask UTS (1300 275 887) or +61 2 9514 1222
Ask UTS